Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Research on the impact of seawater intrusion on nitrogen (N) cycling in coastal estuarine ecosystems is crucial; however, there is still a lack of relevant research conducted underin-situfield conditions. The effects of elevated salinity on N cycling processes and microbiomes were examinedin situseawater intrusion experiments conducted from 2019 to 2021 in the Nakdong River Estuary (South Korea), where an estuarine dam regulates tidal hydrodynamics. After the opening of the Nakdong Estuary Dam (seawater intrusion event), the density difference between seawater and freshwater resulted in varying degrees of seawater trapping at topographically deep stations. Bottom-water oxygen conditions had been altered in normoxia, hypoxia, and weak hypoxia due to the different degrees of seawater trapping in 2019, 2020, and 2021, respectively. Denitrification mostly dominated the nitrate (NO3-) reduction process, except in 2020 after seawater intrusion. However, denitrification rates decreased because of reduced coupled nitrification after seawater intrusion due to the dissolved oxygen limitation in 2020. Dissimilatory nitrate reduction to ammonium (DNRA) rates immediately increased after seawater intrusion in 2020, replacing denitrification as the dominant pathway in the NO3-reduction process. The enhanced DNRA rate was mainly due to the abundant organic matter associated with seawater invasion and more reducing environment (maybe sulfide enhancement effects) under high seawater-trapping conditions. Denitrification increased in 2021 after seawater intrusion during weak hypoxia; however, DNRA did not change. Small seawater intrusion in 2019 caused no seawater trapping and overall normoxic condition, though a slight shift from denitrification to DNRA was observed. Metagenomic analysis revealed a decrease in overall denitrification-associated genes in response to seawater intrusion in 2019 and 2020, while DNRA-associated gene abundance increased. In 2021 after seawater intrusion, microbial gene abundance associated with denitrification increased, while that of DNRA did not change significantly. These changes in gene abundance align mostly with alterations in nitrogen transformation rates. In summary, ecological change effects in N cycling after the dam opening (N retention or release, that is, eutrophication deterioration or mitigation) depend on the degree of seawater intrusion and the underlying freshwater conditions, which constitute the extent of seawater-trapping.more » « less
-
Abstract Subterranean estuaries (STEs) form at the land‐sea boundary where groundwater and seawater mix. These biogeochemically reactive zones influence groundwater‐borne nutrient concentrations and speciation prior to export via submarine groundwater discharge (SGD). We examined a STE located along the York River Estuary (YRE) to determine if SGD delivers dissolved inorganic nitrogen (DIN) and phosphorus (DIP) to the overlying water. We assessed variations in STE geochemical profiles with depth across locations, times, and tidal stages, estimated N removal along the STE flow path, measured hydraulic gradients to estimate SGD, and calculated potential nutrient fluxes. Salinity, dissolved oxygen (DO), DIN, and DIP varied significantly with depth and season (p < 0.05), but not location or tidal stage. Ammonium dominated the DIN pool deep in the STE. Moving toward the sediment surface, ammonium concentrations decreased as nitrate and DO concentrations increased, suggesting nitrification. Potential sediment N removal rates mediated by denitrification were <8 mmoles N m−2 d−1. The total groundwater discharge rate was 38 ± 11 L m−2 d−1; discharge followed tidal and seasonal patterns. Net SGD nutrient fluxes were 0.065–3.2 and 0.019–0.093 mmoles m−2 d−1for DIN and DIP, respectively. However, microbial N removal in the STE may attenuate 0.58% to >100% of groundwater DIN. SGD fluxes were on the same order of magnitude as diffusive benthic fluxes but accounted for <10% of the nutrients delivered by fluvial advection in the YRE. Our results indicate the importance of STE biogeochemical transformations to SGD flux estimations and their role in coastal eutrophication and nutrient dynamics.more » « less
-
Abstract Dinitrogen (N2) fixation is an important source of biologically reactive nitrogen (N) to the global ocean. The magnitude of this flux, however, remains uncertain, in part because N2fixation rates have been estimated following divergent protocols and because associated levels of uncertainty are seldom reported—confounding comparison and extrapolation of rate measurements. A growing number of reports of relatively low but potentially significant rates of N2fixation in regions such as oxygen minimum zones, the mesopelagic water column of the tropical and subtropical oceans, and polar waters further highlights the need for standardized methodological protocols for measurements of N2fixation rates and for calculations of detection limits and propagated error terms. To this end, we examine current protocols of the15N2tracer method used for estimating diazotrophic rates, present results of experiments testing the validity of specific practices, and describe established metrics for reporting detection limits. We put forth a set of recommendations for best practices to estimate N2fixation rates using15N2tracer, with the goal of fostering transparency in reporting sources of uncertainty in estimates, and to render N2fixation rate estimates intercomparable among studies.more » « less
An official website of the United States government
